Empowering Climate Resilient Development and Transformation in Vietnam CLIMADA Climate Risk Analysis Implemented by ISF, AXA Climate and ETH Zurich October 2020 funded by on behalf of managed by part of # Increasing Financing Gap due to Climate Change Why should we care about future climate risk? Overview of Financing Gap for the City of Hue Source: based on Asian Development Bank (2017) ### Climate based Risk Assessment and Adaptation ### **Guiding questions** - What is the expected climate-related damage to the assets/commodities and to societies due to the identified climate risks until 2050? - What are the potential options behavioral, physical and financial measures which can be taken to reduce the expected damage for specific assets? - What is the cost-benefit of implementing such measures to the given region? - Which measures should be prioritized (which are most cost-effective)? - Where should these measures be primarily implemented? - How do they need to be designed to ensure required risk reduction? Climate risk analysis as a tool to facilitate political decision-making ### Climate based Risk Assessment and Adaptation ### Study approach - The study quantifies current and future climate risks using tools developed by the insurance industry (CLIMADA platform - catastrophe models and probabilistic simulation methods). - The study instigates, assesses, and presents various options of climate risk management for policy makers. - Scope of the study Hazards: Tropical cyclone and storm surge – incl. sea level rise Exposure: Agricultural production, residential housing and people Adaptation measures: Focus on measures for coastal protection Climate risk analysis as a flexible first tool to develop adaptation policies # **CLIMADA Modelling Platform** Source: G. Aznar-Siguan, D.N. Bresch, 2019 ## Tropical Cyclone – Wind ### Today's risk - Assessment of historical events indicates more intense storms in northern regions - Data and methods for simulation: - Storm tracks (IBTrACS) - Time period 1980-2019 - Number of Events 269 - Knutson et al., 2015 #### **Future Risk** - Climate scenarios imply changes in intensity and frequency based on IPCC climate scenarios RCP4.5* and RCP8.5** - Scenario considered: Increased intensity and same frequency ^{*} Global temperature increase is more likely <u>not</u> to exceed 2°C ^{**} Global temperature increase likely to exceed 2°C ## Exposure – Residential Houses #### **Total Value of Residential Houses** - Data from UN Global Assessment Report on Disaster Risk Reduction (GAR) - 2020: 125.9 Bn USD #### **Data** - Estimating geographical distribution based on night light intensity - Resolution: 1 km x 1km - Validation by comparison with national statistics: - → Urban population: 37% # Impact of Surge given Climate Change Damage on Residential Houses due to Surge ### **Expected Damage due to Surge:** Expected annual impact (EAI) – Current climate: 2.65 Bn USD • RCP4.5: 2.93 Bn USD (+11%) RCP8.5: 3.08 Bn USD (+16%) #### What does this tell us? - ~ 11%-16% increase in damage due to expected climate change - Coastal and high population areas are most vulnerable to effects of climate change Expected increase in annual damage under RCP 8.5 # Impact of Surge given Climate Change Expected Increase of Future Damage due to Climate Change ## Adaptation Measures – Surge #### Design - Set of measures analysed: - Rehabilitation sea-dykes - Gabions - Plantation/rehabilitation mangroves - Assumed protection against surge up to 3 m water depth Sea-dyke revetments ## Adaptation Measures – Surge ### Design - Combination of all three measures - Implementation only in Mekong Delta #### **Effects** • Cost: 1.8 Bn USD • Benefit: 48.8 Bn USD ### **Alternative options** Change of cost-benefit ratios in case of - different focus on green vs. grey adaptation measures - different mangrove width - different height of sea-dykes Potential for insurance for remaining risks